

FEZA GÜRSEY
CENTER FOR
PHYSICS AND
MATHEMATICS

Dual Perspectíves Meetings

Symplectic Almost Squeezings of Large 4-balls

Felix Schlenk University of Neuchatel

Abstract: In this first general talk I will explain what "symplectic" means, and sketch a proof of Gromov's non-squeezing theorem and of Gromov's 2-ball theorem. These basic symplectic rigidity results already have applications to problems in dynamics, such as short-time superrecurrence and the non-existence of local attractors of certain Hamiltonian PDEs. For the second part, write $B^{4}(a)$ for the ball of capacity $a=\pi r^{2}$, and Z^{4} for the symplectic cylinder $D^{2}(1) x R^{2}$ where $D^{2}(1)$ is the disc of area 1. Going beyond Gromov's non-squeezing theorem, Sackel, Song, Varolgunes, and Zhu recently showed that for $a>1$ the complement $B^{4}(a)-S$ of a subset S in the ball cannot be embedded symplectically into Z^{4} if the Minkowski dimension of S is less than 2. They also found that this result is sharp provided that $a<2$, and then Brendel extended this to $a<3$. In joint work with Emmanuel Opshtein, we find in any ball $B^{4}(a)$ a finite union of planar Lagrangian discs S such that $B^{4}(a) \backslash S$ symplectically embeds into Z^{4}. Among the applications are: capacity killing; non-displaceability of the Clifford torus $T(1 / d, 1 / d)$ from S in $B^{4}(d)$; and the existence of very short Reeb chords from a Legendrian knot back to itself or to S.

Date: Friday, June 09, 2023
Program: Morning session 10:30-12:00, Afternoon session 13:30-15:00
Location: Boğaziçi University, Kandilli Campus, Üsküdar-İstanbul

